Bruchrechnung: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(28 dazwischenliegende Versionen von 7 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[[Datei:Cake quarters.svg|mini|Dieser Kuchen wurde in vier Teile zerschnitten. Drei Viertel sind noch da. Ein Viertel fehlt.]] | |||
Bruchrechnung braucht man bei einer Teilung. Das ist nützlich, wenn etwas geteilt werden soll, was sich mit ganzen [[Zahl]]en nicht beschreiben lässt. Beispielsweise will man vielleicht einen Kuchen unter mehreren Menschen aufzuteilen. | |||
[[Datei:2 Viertel gleich vier Achtel.png|thumb|2 Viertel sind dasselbe wie 4 Achtel]] | |||
Den Bruch ½ kann man sich so denken, dass 1 Kuchen auf 2 Menschen verteilt wurde. Man kann sich aber auch vorstellen, dass 1 Kuchen in 4 Teile zerschnitten wurde und 1 Mensch hat 2 Teile bekommen. Oder der Kuchen wurde in 8 Teile zerschnitten und 1 Mensch hat 4 Teile erhalten. Dies zeigt das untere Bild. | |||
Den Bruch ¾ kann man sich auf zwei Arten denken: Entweder wurde 1 Kuchen in 4 Stücke aufgeteilt und ein Mensch hat davon drei Stücke bekommen. Oder 3 Kuchen wurden auf 4 Menschen aufgeteilt. | |||
Etwas Bestimmtes ist der [[Dezimalzahl|Dezimalbruch]]. Er ist eigentlich ein Zehnerbruch. Das Ganze wurde also in 10, 100, 1000 oder in eine noch größere Zehnerzahl aufgeteilt. ½ heißt als Dezimalbruch 0,5. Ein halber [[Liter]] beispielsweise ist dasselbe wie 5 Deziliter oder eben 0,5 Liter. So steht es auf den [[PET-Flasche]]en. ¾ sind dann 0,75 und so weiter. | |||
Mit den Bruchrechnungen beginnt man in der oberen Hälfte der [[Grundschule]]. Kompliziertere Bruchrechnungen folgen jedoch erst in höheren Schulstufen. Dabei wird auch der Taschenrechner oder der [[Computer]] eingesetzt. Sie können komplizierte Systeme von Brüchen auflösen helfen. Dies erspart dem Schüler viel [[Arbeit]]. | |||
{{Artikel}} | |||
[[Kategorie:Wissenschaft und Technik]] | |||
[[ | |||
Aktuelle Version vom 19. Juni 2024, 19:04 Uhr
Bruchrechnung braucht man bei einer Teilung. Das ist nützlich, wenn etwas geteilt werden soll, was sich mit ganzen Zahlen nicht beschreiben lässt. Beispielsweise will man vielleicht einen Kuchen unter mehreren Menschen aufzuteilen.
Den Bruch ½ kann man sich so denken, dass 1 Kuchen auf 2 Menschen verteilt wurde. Man kann sich aber auch vorstellen, dass 1 Kuchen in 4 Teile zerschnitten wurde und 1 Mensch hat 2 Teile bekommen. Oder der Kuchen wurde in 8 Teile zerschnitten und 1 Mensch hat 4 Teile erhalten. Dies zeigt das untere Bild.
Den Bruch ¾ kann man sich auf zwei Arten denken: Entweder wurde 1 Kuchen in 4 Stücke aufgeteilt und ein Mensch hat davon drei Stücke bekommen. Oder 3 Kuchen wurden auf 4 Menschen aufgeteilt.
Etwas Bestimmtes ist der Dezimalbruch. Er ist eigentlich ein Zehnerbruch. Das Ganze wurde also in 10, 100, 1000 oder in eine noch größere Zehnerzahl aufgeteilt. ½ heißt als Dezimalbruch 0,5. Ein halber Liter beispielsweise ist dasselbe wie 5 Deziliter oder eben 0,5 Liter. So steht es auf den PET-Flascheen. ¾ sind dann 0,75 und so weiter.
Mit den Bruchrechnungen beginnt man in der oberen Hälfte der Grundschule. Kompliziertere Bruchrechnungen folgen jedoch erst in höheren Schulstufen. Dabei wird auch der Taschenrechner oder der Computer eingesetzt. Sie können komplizierte Systeme von Brüchen auflösen helfen. Dies erspart dem Schüler viel Arbeit.
Klexikon.de ist die Wikipedia für Kinder zwischen 5 und 15 Jahren, also ein kostenloses Online-Lexikon für Schulkinder. Zum Thema Bruchrechnung findet ihr weitere Kinderseiten in der Kindersuchmaschine „Frag Finn“.
Das Klexikon wird gefördert durch den weltgrößten Wikipedia-Förderverein Wikimedia Deutschland, die Beauftragte der Bundesregierung für Kultur und Medien, die Bundeszentrale für Kinder- und Jugendmedienschutz und die Medienanstalt Berlin-Brandenburg.
Unsere Klexikon-Botschafter sind die KiKA-Moderatoren Ralph Caspers („Wissen macht Ah!“, “Die Sendung mit der Maus“ und „Frag doch mal die Maus“) und Julian Janssen („Checker Julian“).
Das Kinderlexikon Klexikon sorgt für Medienkompetenz und Bildungsgerechtigkeit und ist wie die Wikipedia auf Spenden angewiesen. Denn hier finden Schülerinnen und Schüler zu 3.500 Themen das Wichtigste einfach erklärt, mit Definition und Bildern. Das ist Grundwissen kindgerecht und leicht verständlich für Unterricht, Hausaufgaben und Präsentationen in der Schule.