Würfel: Unterschied zwischen den Versionen
Admin2 (Diskussion | Beiträge) K (Textersetzung - „|mini|“ durch „|thumb|“) |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
(4 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[[ | [[File:160327 White dice 12.jpg|thumb|Das [[Wort]] „Würfel“ kommt von dem [[Verb]] „werfen“. Spiel-Würfel sind aber genau genommen keine Würfel: Die Ecken sind abgerundet, damit sie besser rollen. Solche Würfel zum Spielen kannte man schon im [[Altertum]].]] | ||
Ein Würfel oder Kubus ist eine [[Geometrie|geometrische]] Figur. Er ist wie ein [[Quadrat]], aber im Raum, also dreidimensional. Man kennt Würfel zum Beispiel als [[Spiel]]-Würfel mit Punkten auf den Oberflächen. Die Punkte auf zwei sich gegenüberliegenden Seiten ergeben zusammengerechnet immer die Zahl 7. | Ein Würfel oder Kubus ist eine [[Geometrie|geometrische]] Figur. Er ist wie ein [[Quadrat]], aber im Raum, also dreidimensional. Man kennt Würfel zum Beispiel als [[Spiel]]-Würfel mit Punkten auf den Oberflächen. Die Punkte auf zwei sich gegenüberliegenden Seiten ergeben zusammengerechnet immer die Zahl 7. | ||
Jeder Würfel hat sechs [[Fläche]]n, die aus gleich großen Quadraten bestehen. Daher besitzt ein Würfel acht Ecken und zwölf gleich lange Kanten. Die Kanten des Würfels bilden zueinander rechte Winkel. Ein Würfel ist also ein | Jeder Würfel hat sechs [[Fläche]]n, die aus gleich großen Quadraten bestehen. Daher besitzt ein Würfel acht Ecken und zwölf gleich lange Kanten. Die Kanten des Würfels bilden zueinander rechte Winkel. Ein Würfel ist also ein besonderer [[Quader]], da alle Kanten gleich lang sind. | ||
[[Datei:Cube pic 2.png|mini|So zeichnet man einen Würfel. Eigentlich ist er dreidimensional, eine Zeichnung ist aber flach und hat nur zwei Dimensionen. Deshalb zeichnet man nur die [[Linie]]n richtig, die man sieht. Die anderen sind gestrichelt. Der Schatten hilft zusätzlich. Das nennt man auch Bild eines Drahtmodells.]] | |||
Viele Spiele haben Würfel. Wenn ein Würfel geworfen wird, fällt er auf eine zufällige Seite. Oben sieht man eine bestimmte Anzahl von Punkten. Bei einem einfachen Würfelspiel gewinnt derjenige Spieler, der am meisten Punkte hat. Man kann also mit Würfeln den Zufall ins Spiel bringen. Man kann aber auch mogeln: Man verändert den eigenen Würfel so, dass die Seite mit der 1 schwerer ist. Dann liegt beim Würfeln eher die 6 oben. | Viele Spiele haben Würfel. Wenn ein Würfel geworfen wird, fällt er auf eine zufällige Seite. Oben sieht man eine bestimmte Anzahl von Punkten. Bei einem einfachen Würfelspiel gewinnt derjenige Spieler, der am meisten Punkte hat. Man kann also mit Würfeln den Zufall ins Spiel bringen. Man kann aber auch mogeln: Man verändert den eigenen Würfel so, dass die Seite mit der 1 schwerer ist. Dann liegt beim Würfeln eher die 6 oben. | ||
In der [[Natur]] gibt es keine genauen Würfel. Am nächsten kommt der Würfelform das Katzengold. Es wird auch Pyrit genannt. Dies sind Kristalle, die während sehr langer Zeit gewachsen sind. | In der [[Natur]] gibt es keine genauen Würfel. Am nächsten kommt der Würfelform das Katzengold. Es wird auch Pyrit genannt. Dies sind [[Kristall|Kristalle]], die während sehr langer Zeit gewachsen sind. | ||
In der [[Geometrie]] kann man rund um den Würfel viele Berechnungen anstellen. Aus der Kantenlänge lässt sich seine Oberfläche berechnen. Oder sein [[Meter|Volumen]], das heißt, wie viel Platz da eigentlich drin ist. Es gibt auch verschiedene Methoden, den Würfel auf ein Blatt zu [[Zeichnung|zeichnen]] oder mit einem Computerprogramm darzustellen. | In der [[Geometrie]] kann man rund um den Würfel viele Berechnungen anstellen. Aus der Kantenlänge lässt sich seine Oberfläche berechnen. Oder sein [[Meter|Volumen]], das heißt, wie viel Platz da eigentlich drin ist. Es gibt auch verschiedene Methoden, den Würfel auf ein [[Blatt]] zu [[Zeichnung|zeichnen]] oder mit einem Computerprogramm darzustellen. | ||
<gallery> | <gallery> | ||
Zeile 16: | Zeile 16: | ||
Развертка куба.png|So sieht ein Würfel aus, wenn er auseinander gefaltet wird. | Развертка куба.png|So sieht ein Würfel aus, wenn er auseinander gefaltet wird. | ||
Rubiks-Cube.gif|Ein Zauberwürfel in der Grundstellung | Rubiks-Cube.gif|Ein Zauberwürfel in der Grundstellung | ||
File:Wuerfel5.jpg|Würfel für Spiele können heute verschiedene Formen haben. | |||
</gallery> | </gallery> | ||
{{Artikel}} | {{Artikel|mini=ja}} | ||
[[Kategorie:Klexikon-Artikel|Wurfel]] | [[Kategorie:Klexikon-Artikel|Wurfel]] | ||
[[Kategorie:Wissenschaft und Technik|Wurfel]] | [[Kategorie:Wissenschaft und Technik|Wurfel]] |
Aktuelle Version vom 19. Oktober 2024, 18:56 Uhr
Ein Würfel oder Kubus ist eine geometrische Figur. Er ist wie ein Quadrat, aber im Raum, also dreidimensional. Man kennt Würfel zum Beispiel als Spiel-Würfel mit Punkten auf den Oberflächen. Die Punkte auf zwei sich gegenüberliegenden Seiten ergeben zusammengerechnet immer die Zahl 7.
Jeder Würfel hat sechs Flächen, die aus gleich großen Quadraten bestehen. Daher besitzt ein Würfel acht Ecken und zwölf gleich lange Kanten. Die Kanten des Würfels bilden zueinander rechte Winkel. Ein Würfel ist also ein besonderer Quader, da alle Kanten gleich lang sind.
Viele Spiele haben Würfel. Wenn ein Würfel geworfen wird, fällt er auf eine zufällige Seite. Oben sieht man eine bestimmte Anzahl von Punkten. Bei einem einfachen Würfelspiel gewinnt derjenige Spieler, der am meisten Punkte hat. Man kann also mit Würfeln den Zufall ins Spiel bringen. Man kann aber auch mogeln: Man verändert den eigenen Würfel so, dass die Seite mit der 1 schwerer ist. Dann liegt beim Würfeln eher die 6 oben.
In der Natur gibt es keine genauen Würfel. Am nächsten kommt der Würfelform das Katzengold. Es wird auch Pyrit genannt. Dies sind Kristalle, die während sehr langer Zeit gewachsen sind.
In der Geometrie kann man rund um den Würfel viele Berechnungen anstellen. Aus der Kantenlänge lässt sich seine Oberfläche berechnen. Oder sein Volumen, das heißt, wie viel Platz da eigentlich drin ist. Es gibt auch verschiedene Methoden, den Würfel auf ein Blatt zu zeichnen oder mit einem Computerprogramm darzustellen.
Wenn eine geometrische Figur aus mehr als sechs Flächen besteht, wird sie nahezu kugelförmig.
Klexikon.de ist die Wikipedia für Kinder zwischen 5 und 15 Jahren, also ein kostenloses Online-Lexikon für Schulkinder. Zum Thema Würfel findet ihr einen besonders einfachen Artikel auf MiniKlexikon.de und weitere Kinderseiten in der Kindersuchmaschine „Frag Finn“.
Das Klexikon wird gefördert durch den weltgrößten Wikipedia-Förderverein Wikimedia Deutschland, die Beauftragte der Bundesregierung für Kultur und Medien, die Bundeszentrale für Kinder- und Jugendmedienschutz und die Medienanstalt Berlin-Brandenburg.
Unsere Klexikon-Botschafter sind die KiKA-Moderatoren Ralph Caspers („Wissen macht Ah!“, “Die Sendung mit der Maus“ und „Frag doch mal die Maus“) und Julian Janssen („Checker Julian“).
Das Kinderlexikon Klexikon sorgt für Medienkompetenz und Bildungsgerechtigkeit und ist wie die Wikipedia auf Spenden angewiesen. Denn hier finden Schülerinnen und Schüler zu 3.500 Themen das Wichtigste einfach erklärt, mit Definition und Bildern. Das ist Grundwissen kindgerecht und leicht verständlich für Unterricht, Hausaufgaben und Präsentationen in der Schule.