Symmetrie

Aus Klexikon – das Kinderlexikon
Version vom 29. November 2016, 22:46 Uhr von Michael Schulte (Diskussion | Beiträge) (Textersetzung - „[File:“ durch „[Datei:“)
Dieser Schwalbenschwanz-Schmetterling kann seine Flügel exakt aufeinanderlegen, weil sie achsen-symmetrisch sind.

Wer sich vor einen Spiegel stellt, sieht darin seinen eigenen Körper. Das Original und das Spiegelbild nennt man spiegelverkehrt oder symmetrisch. Jeder Gegenstand bildet in einem Spiegel ein symmetrisches Abbild.

Der Mensch an sich ist auch bereits eine symmetrische Figur. Die linke Seite steht spiegelverkehrt zur rechten Seite. Dies stimmt natürlich nicht ganz in jeder Kleinigkeit. Ein Gesicht ist meistens ein wenig einseitig. Grob gesehen spricht man in diesem Fall trotzdem von Symmetrie.

Bei einigen Tieren ist die Symmetrie ganz offensichtlich, zum Beispiel beim Schmetterling. Auf einem Foto könnte man eine Linie finden, welche den Schmetterling in zwei gleiche Hälften teilt. An dieser Linie könnte man das Papier falten, sodass beide Hälfte der Figur genau aufeinanderpassen. Man nennt sie deshalb deckungsgleich. Die Faltlinie heisst Symmetrieachse.

Viele technische Dinge, zum Beispiel Flugzeuge, sind nahezu perfekt achsensymmetrisch. Wäre ein Flugzeug nicht achsensymmetrisch, so könnte es nicht richtig fliegen. Es gibt auch Wohnhäuser oder Schlösser, die genau achsensymmetrisch gebaut sind.

Gibt es noch andere Arten von Symmetrien?

Einige Figuren kann man drehen, und in bestimmten Stellungen sehen sie immer wieder gleich aus. Das beste Beispiel ist das Windrad. Man kann es um einen Flügel weiterdrehen, ohne dass man einen Unterschied erkennt. Die Bilder sind also deckungsgleich. Man nennt dies Drehsymmetrie.

Es gibt auch punktsymmetrische Figuren, zum Beispiel den Rhombus. Man kann ihn an seinem Mittelpunkt spiegeln. So sieht er wieder genau gleich aus.

Spielkarten sind besonders interessant. Einige sind achsensymmetrisch. Andere sind drehsymmetrisch und gleichzeitig punktsymmetrisch. Am besten probiert man es selber aus.

Vorlage:Mehr